Pengaruh Gangguan Ritme Sirkadian Dengan Kejadian Diabetes Melitus Tipe 2
Main Article Content
Abstract
Globally, it is estimated that around 422 million adults had diabetes in 2014. Diabetics then have a higher risk of developing other diseases, such as: stroke and heart attack. Circadian rhythm disorders such as sleep disorders are one of the factors causing type 2 diabetes mellitus. This study isintended to increase knowledge and as a basis for further research on the effect of circadian misalignment in type 2 diabetes mellitus and to determine the effect of sleep disorders on type 2 diabetes. This research is a literature review with a database of articles on Google Scholar, PubMed, and Science Direct from 2016 to 2021 from national journals, and international journals indexed by Scopus and ISSN. Circadian misalignment discussed in this study is that sleep disorders affect the incidence of type 2diabetes mellitus. Lack of or little sleep will affect type 2 diabetes mellitus. This effect is mediated by a number of hormones such as melatonin, cortisol, leptin, and ghrelin. There is an effect of circadian misalignment on the incidence of type 2 diabetes mellitus.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
WHO. Global Report on Diabetes. ISBN. 2016;978:6–86. http://www.who.int/about/licensing/copyright_form/index.html%0Ahttp://www.who.int/about/licensing/copyright_form/index.html%0Ahttps://apps.who.int/iris/handle/10665/204871%0Ahttp://www.who.int/about/licensing/.
Kemenkes RI. Riskesdas 2018. In Journal of Chemical Information and Modeling. 2019.
Wu, Y., Ding, Y., Tanaka, Y., & Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. International Journal of Medical Sciences. 2014;11(11):1185–1200. https://doi.org/10.7150/ijms.10001.
Onaolapo, A. Y., & Onaolapo, O. J. Circadian dysrhythmia-linked diabetes mellitus: Examining melatonin’s roles in prophylaxis and management. World Journal of Diabetes. 2018;9(7):99–114. https://doi.org/10.4239/wjd.v9.i7.99.
Khan, S., Malik, B. H., Gupta, D., & Rutkofsky, I. The Role of Circadian Misalignment due to Insomnia, Lack of Sleep, and Shift Work in Increasing the Risk of Cardiac Diseases: A Systematic Review. Cureus. 2020;12(1):1–8. https://doi.org/10.7759/cureus.6616.
Yong, L. C., Li, J., & Calvert, G. M. Sleep-related problems in the US working population: Prevalence and association with shiftwork status. Occupational and Environmental Medicine. 2017;74(2):93–104. https://doi.org/10.1136/oemed-2016-103638.
Olii, N., Kepel, B. J., & Silolonga, W. Hubungan Kejadian Insomnia Dengan Konsentrasi Belajar Pada Mahasiswa Semester V Program Studi Ilmu Keperawatan Fakultas Kedokteran Universitas Sam Ratulangi. Jurnal Keperawatan. 2018;6(1).
Baron, K. G., & Reid, K. J. Circadian Misalignment and Health. Physiology & Behavior. 2017;176(12):139–148. https://doi.org/10.1016/j.physbeh.2017.03.040.
Al -Abri, M. A. et.al. Habitual Sleep Deprivation is Associated with Type 2 Diabetes: A Case-Control Study. Oman Medical Journal. 2016;31(6):399–403. https://doi.org/10.5001/omj.2016.81.
Ogilvie, R. P., & Patel, S. R. The Epidemiology of Sleep and Diabetes. Current Diabetes Reports. 2018;18(10):82. https://doi.org/10.1007/s11892-018-1055-8.
Kothari, V., Cardona, Z., Chirakalwasan, N., Anothaisintawee, T., & Reutrakul, S. 2021.
Kampmann, U., Lauritzen, E. S., Grarup, N., Jessen, N., Hansen, T., Møller, N., & Støy, J. (Acute metabolic effects of melatonin—A randomized crossover study in healthy young men. In Journal of Pineal Research. 2021;70(2). https://doi.org/10.1111/jpi.12706.
Mok, J. X., Ooi, J. H., Ng, K. Y., Koh, R. Y., & Chye, S. M. A new prospective on the role of melatonin in diabetes and its complications. Hormone Molecular Biology and Clinical Investigation. 2019;1–14. https://doi.org/10.1515/hmbci-2019-0036.
Morais, J. B. S., Severo, J. S., Beserra, J. B., de Oiveira, A. R. S., Cruz, K. J. C., de Sousa Melo, S. R., do Nascimento, G. V. R., de Macedo, G. F. S., & do Nascimento Marreiro, D. Association Between Cortisol, Insulin Resistance and Zinc in Obesity: a Mini-Review. Biological Trace Element Research. 2019;191(2):323–330. https://doi.org/10.1007/s12011-018-1629-y
Kamba, A., Daimon, M., Murakami, H., Otaka, H., Matsuki, K., Sato, E., Tanabe, J., Takayasu, S., Matsuhashi, Y., Yanagimachi, M., Terui, K., Kageyama, K., Tokuda, I., Takahashi, I., & Nakaji, S. Association between higher serum cortisol levels and decreased insulin secretion in a general population. PLoS ONE. 2016;11(11):1–10. https://doi.org/10.1371/journal.pone.0166077.
Ortiz, R., et.al. The association of morning serum cortisol with glucose metabolism and diabetes: The Jackson Heart Study. Psychoneuroendocrinology. 2019;103(July 2018):25–32. https://doi.org/10.1016/j.psyneuen.2018.12.237.
Osegbe, I., Okpara, H., & Azinge, E. Relationship between serum leptin and insulin resistance among obese Nigerian women. Annals of African Medicine. 2016;15(1):14–19. https://doi.org/10.4103/1596-3519.158524.
Brown, R. J., et.al. Metreleptin-mediated improvements in insulin sensitivity are independent of food intake in humans with lipodystrophy. Journal of Clinical Investigation. 2018;128(8):3504–3516. https://doi.org/10.1172/JCI95476.
Grandner, M. A., Seixas, A., Shetty, S., & Shenoy, S. Sleep Duration and Diabetes Risk: Population Trends and Potential Mechanisms. Current Diabetes Reports. 2016;16(11):106. https://doi.org/10.1007/s11892-016-0805-8.
Vestergaard, E. T., Jessen, N., Møller, N., & Jørgensen, J. O. L. Acyl ghrelin induces insulin resistance independently of GH, cortisol, and free fatty acids. Scientific Reports. 2017;7:1–10. https://doi.org/10.1038/srep42706.
Zhang, C. S., Wang, L. X., Wang, R., Liu, Y., Song, L. M., Yuan, J. H., Wang, B., & Dong, J. The correlation between circulating ghrelin and insulin resistance in obesity: A meta-analysis. Frontiers in Physiology. 2018;9(SEP):1–8. https://doi.org/10.3389/fphys.2018.01308